
ROSCoq: Robots powered by constructive reals

Abhishek Anand and Ross Knepper

Cornell University, Ithaca, NY-14850, USA

Abstract. We present ROSCoq, a framework for developing certified
Coq programs for robots. ROSCoq subsystems communicate using mes-
sages, as they do in the Robot Operating System (ROS). We extend the
logic of events to enable holistic reasoning about the cyber-physical be-
havior of robotic systems. The behavior of the physical world (e.g. New-
ton’s laws) and associated devices (e.g. sensors, actuators) are specified
axiomatically. For reasoning about physics we use and extend CoRN’s
theory of constructive real analysis. Instead of floating points, our Coq
programs use CoRN’s exact, yet fast computations on reals, thus enabling
accurate reasoning about such computations.
As an application, we specify the behavior of an iRobot Create. Our
specification captures many real world imperfections. We write a Coq
program which receives requests to navigate to specific positions and
computes appropriate commands for the robot. We prove correctness
properties about this system. Using the ROSCoq shim, we ran the pro-
gram on the robot and provide even experimental evidence of correctness.

1 Introduction

Cyber-Physical Systems (CPS) such as ensembles of robots can be thought of
as distributed systems where agents might have sensing and/or actuation ca-
pabilities. In fact the Robot Operating System (ROS) [15] presents a unified
interface to robots where subcomponents of even a single robot are represented
as nodes (e.g. sensor, actuator, controller software) that communicate with other
nodes using asynchronous message passing. The Logic of Events (LoE) [3] frame-
work has already been successfully used to develop certified functional programs
which implement important distributed systems like fault-tolerant replicated
databases [19]. Events capture interactions between components and observa-
tions rather than internal state. This enables specification and reasoning at
higher-levels while integrating easily with more detailed information [22]. CPSs
are arguably harder to get right, because of the additional complexity of rea-
soning about physics and how it interacts with the cyber components. In this
work, we show that an event-based semantics is appropriate for reasoning about
CPSs too. We extend the LoE framework to enable development of certified Coq
programs for CPSs.

There are several challenges in extending LoE to provide a semantic foun-
dation for CPSs, and thus enable holistic reasoning about such systems: 1) One
has to model the physical quantities, e.g. the position, direction and velocity
of each robot and also the physical laws relating them. 2) Time is often a key

2

component of safety proofs of a CPS. For example, the software controller of a
robot needs to send correct messages (commands) to the motors before it col-
lides with something. 3) The software controller of a robot interacts with devices
such as sensors and actuators which measure or influence the physical quanti-
ties. The specification of these devices typically involve both cyber and physical
aspects. 4) Robotic programs often need to compute with real numbers, which
are challenging to reason about accurately.

Our Coq framework addresses each of these challenges. Our running example
is that of a robotic system consisting of an iRobot Create1 and its controller-
software. This setup can be represented as a distributed system with 3 agents
(a.k.a. nodes in ROS) : a) the hardware agent which represents the robot along
with its ROS drivers/firmware. It receives messages containing angular and lin-
ear velocities and adjusts the motors accordingly to achieve those velocities. b)
the software agent which sends appropriate velocity messages to the hardware
agent c) the external agent which sends messages to the software agent telling
where the robot should go. The message sequence diagram below shows a sample
interaction between the agents. Click here for the corresponding video.

hardware
agent

software agent
(robot controller)

external
agent

go to (1,1)

start turning @ .1 rad/s

stop

start moving @ 1m/s

stop

To define a CPS in ROSCoq, one has
to first define its physical model and then
define each agent independently. The physi-
cal model specifies how the relevant physical
quantities evolve over time. These are rep-
resented as continuous real-valued functions
over time, where time is represented as a non-
negative real number. In our example, the rel-
evant physical quantities are the position, ori-
entation and velocities (angular and linear) of
the robot. Thanks to dependent types of Coq, it is easy to express physical
constraints such as the fact that the velocity is the derivative of the position
w.r.t. time. We extensively used CoRN’s [8] rich library of definitions and theo-
rems about derivatives, integrals, continuity, trigonometry etc. to represent and
reason about physical components. The assumption of continuity allows us to
get around many decidability issues related to constructive reals. During the
course of this project, we contributed some generic lemmas about constructive
real analysis to CoRN, such as a stronger constructive version of Intermediate
Value Theorem which we found more useful while reasoning about CPSs 2.

Events have time-stamps and one can specify assumptions on the time needed
by activities like message delivery, sensing, actuation, computation etc. to hap-
pen. These will have to be empirically validated; currently one cannot statically
reason about the running time of Coq programs.

Agents of a CPS are represented as a relation between the physical model
(how physical quantities evolve over time) and the trace of observable events
(sending and receiving of messages) generated by the agent. This representation

1 http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
2 https://github.com/c-corn/corn/pull/13

http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid3.html
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx
https://github.com/c-corn/corn/pull/13

3

allows incomplete and non-deterministic specifications. For hardware devices
such as sensors and actuators, this relation is specified axiomatically. For exam-
ple, the relation for the hardware agent mentioned above asserts that whenever it
receives a message requesting a velocity v, within some time δ the robot attains
some velocity close to v. The semantics of software agents (e.g. the middle one
in the above figure) can be specified indirectly by providing “message handlers”
written as Coq functions. Because Coq is a pure functional language and has
no IO facilities, we provide a ROS shim which handles sending and receiving
of messages for such Coq programs. Given a received message as input, mes-
sage handlers compute messages that are supposed to be sent by the shim in
response. They can also request the shim to send some messages at a later time.
For example, to get a robot to turn by a right angle, one can send a message
requesting a positive angular velocity (say 1 rad/s) and send another message
requesting an angular velocity of 0 after time π

2 s. While reasoning about the
behavior of the system, we assume that the actual time a message is sent is not
too different from the requested time.

Clearly robotics programs need to compute with real numbers. In CoRN,
real numbers (e.g. π) are represented as Coq’s functional programs that can
be used to compute arbitrarily close rational (Q) approximations to the repre-
sented real number. Most operations on such reals are exact, e.g. Field operations,
trigonometric functions, integral, etc. Some operations such as equality test are
undecidable, hence only approximate. However, the error in such approximations
can be made arbitrarily small (see Sec. 4.2). We prove a parametric upper bound
on how far the robot will be from the position requested by the external agent.
The parameters are bounds on physical imperfections, above mentioned compu-
tational errors, variations in message-delivery timings, etc. Using our shim, we
ran our Coq program on an actual robot. We provide measurements over several
runs and videos of the system in action.

Sec. 2 describes how to specify a physical model in ROSCoq. Sec. 3 describes
the semantics of events and message delivery. Sec. 4 describes the semantics
of agents. Sec. 5 describes some proof techniques for holistic reasoning about
a CPS and the properties proven about our running example. It ends with a
description of our experiments. Finally, we discuss related work and conclude.
ROSCoq sources and more details are available at the companion website [17].

2 Physics

One of the first steps in developing a CPS using ROSCoq is to accurately specify
its physical model. It describes how all of the relevant physical quantities in the
system evolve over time. In our running example, these include the position and
orientation of the robot and their derivatives. Using dependent types, one can
also include the constraints between the physical quantities, e.g. the constraint
that velocity is the derivative of position w.r.t. time. Other examples include
physical laws such as Newton’s laws of motion, laws of thermodynamics. We use
2 of the 3 versions of constructive reals implemented in CoRN. In our programs
which are supposed to be executed, we use the faster implementation (CR), while

http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.abstract_algebra.html#Field
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/CR.html

4

we use the slower (IR) for reasoning. CoRN provides field and order isomorphisms
between these 2 versions. To avoid confusion, we use the notation R for both
versions. However, clicking at colored text often jumps to its definition, either
in this document or in external web pages.

Time is defined as non-negative reals, where 0 denotes the time when the
system starts. For each relevant physical quantity, the physical model determines
how it evolves over time. This can be represented as a member (say f) of the
function type Time → R. The intended meaning is that for time t, f t denotes
the value of the physical quantity at time t. However, physical processes are
usually continuous, at least at the scale where classical physics is applicable. For
example, a car does not suddenly disappear at some time and appear miles apart
at the exact same time. See [9] for a detailed discussion of the importance of
continuity in physics. So, we choose to represent evolution of physical quantities
as continuous functions. The type TContR is similar to the function type Time→
R, except that it additionally requires that its members be continuous functions.
We have proved that TContR is an instance of the Ring typeclass [20], where ring
operations on TContR are pointwise versions of the corresponding operations on
real numbers. Apart from the proofs of the ring laws, this instance also involves
proving that those ring operations result in continuous functions. As a result of
this proof, one can use notations like +, ∗ on members of TContR, and the ring

tactic of Coq can automate equational reasoning (about TContR expressions)
that follows just from ring laws.

Using records, which are just syntactic sugars for dependent pairs, one can
model multiple physical quantities and also the associated physical laws. The
record type below defines the physical model in our running example. It repre-
sents how the physical state of an iCreate robot evolves over time.

Record iCreate : Type := {
position : Cart2D TContR;
theta : TContR; linVel : TContR; omega : TContR;

derivRot : isDerivativeOf omega theta;
derivX : isDerivativeOf (linVel ∗ (FCos theta)) (X position);
derivY : isDerivativeOf (linVel ∗ (FSin theta)) (Y position);

init1: ({X position} 0) ≡ 0 ∧ ({Y position} 0) ≡ 0;
init2: ({theta} 0) ≡ 0 ∧ ({linVel} 0) ≡ 0 ∧ ({omega} 0) ≡ 0
}.
For any type, A, the type Cart2D A is isomorphic to the product type A ×
A. X and Y are the corresponding projection functions. The type Polar2D A is
similar, except that rad and θ are the projection functions. So, the first field
(position) of the record type (iCreate) above is essentially a pair of continuous
functions, modeling the evolution of X and Y coordinates over time, respectively.
The next line defines 3 fields which respectively model the orientation, linear
velocity and angular velocity. The types of remaining fields depend on one or
more of the first 4 fields. This dependence is used to capture constraints on the
first four fields. The last 2 fields specify the initial conditions. The 3 fields in
the middle characterize the derivatives of position and orientation of the robot.

http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCoq.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/IR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.abstract_algebra.html#Ring
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#plus
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
https://coq.inria.fr/refman/Reference-Manual027.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/MathClasses.interfaces.canonical_names.html#mult
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FSin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/stdlib/Coq.Init.Logic.html#eq
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad

5

The first of those (derivRot) is a constructive proof/evidence that omega is
the derivative of theta. The definition of the relation isDerivativeOf is based
on CoRN’s constructive notion of a derivative, which in turn is based on [4].
The next two are slightly more complicated and involve some trigonometry.
FCos denotes the pointwise cosine function of type TContR → TContR. So,
FCos theta is a function describing how the cosine of the robot’s orientation
(theta) evolves over time. Recall that here ∗ represents pointwise multiplication
of functions. derivX and derivY imply that the linear motion of the robot is
constrained to be along the instantaneous orientation of the robot (as defined
by theta).

Our definition of a CPS is parametrized by an arbitrary type which is sup-
posed to represent the physical model of the system. In the case of our running
example, that type is iCreate (defined above). In the future, we plan to consider
applications of our framework to systems of multiple robots. For a system of 2
iCreate robots, one could use the type iCreate × iCreate to represent the physical
model. In Sec. 4, we will see that the semantics of hardware agents of a CPS is
specified partly in terms of the physical model of the CPS.

3 Events and Message Delivery

As mentioned in Sec.1, CPSs such as ensembles of robots can be thought of as
distributed systems where agents might have sensing and/or actuation capabil-
ities. The Logic of Events (LoE) framework has already been successfully used
to reason about complicated distributed systems like fault-tolerant replicated
databases [19]. It is based on seminal work by Lamport and formalizes the notion
of message sequence diagrams which are often used in reasoning about the be-
havior of distributed systems. A distributed system (also a CPS) can be thought
of as a collection of agents (components) that communicate via message passing.
This is true at several levels of abstraction. In a collection of robots collaborating
on a task (e.g. [5]), each robot can be considered as an agent. Moreover, when
one looks inside one of those robots, one sees another CPS where the agents
are components like software controllers, sensors and actuators. As mentioned
before, the Robot Operating System (ROS) [15] presents a unified interface to
robots where the subcomponents of even a single robot (e.g. sensors, actuators,
controller) are represented as agents (a.k.a. nodes in ROS) that communicate
with other agents using message passing. In a message sequence diagram such as
the one in Sec. 1, agents are usually represented as vertical lines where the down-
ward direction denotes passing of time. In ROSCoq, one specifies the collection
of agents by an arbitrary type (say Loc) with decidable equality.

The next and perhaps most central concept in LoE is that of an event. In a
message sequence diagram, these are points in the vertical lines usually denoting
receipt or sending of messages by an agent. The slant arrows denote flight of
messages. We model events by defining an abstract type Event which has a
bunch of operations, such as:

eLoc : Event → Loc; eMesg : Event → Message;
causedBy : Event → Event → Prop; causalWf : well founded causedBy

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#isDerivativeOf
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod

6

For any event ev , eLoc ev denotes the agent associated with the event. For
receive-events, this is the agent who received the message. For send-events, this
is the agent who sent the message. eMesg ev is the associated Message. The
relation causedBy captures the causal ordering on events. causalWf formalizes
the assumption that causal order is well-founded [10]. It allows one to prove
properties by induction on causal order.

So far, our definition of an event is a straightforward translation (to Coq)
of the corresponding Nuprl definition [19]. For CPSs, we need to associate more
information with events. Perhaps the most important of those is a physical (as
opposed to logical) notion of time when events happen. For example, the software
agent needs to send appropriate messages to the hardware agent before the robot
collides with something. One needs to reason about the time needed for activities
like sensing, message delivery, computation to happen. So, we add the following
operation:

eTime : Event → QTime;
globalCausal : ∀ (e1 e2 : Event), causedBy e1 e2 → (eTime e1 < eTime e2)

For any event ev , eTime ev denotes the physical (Newtonian) time when it
happened. QTime is a type of non-negative rational numbers where 0 represents
the time when the system was started3. Note that this value of time is merely
used for reasoning about the behavior of the system. As we will see later, a
software controller cannot use it. This is because there is no way to know the
exact time when an event, e.g. receipt of a message happened. For that, one would
have to exactly synchronize clocks, which is impossible in general. One could
implement provably correct approximate time-synchronization in our framework
and then let the software controllers access an approximately correct value of
the time when an event happened.

3.1 Message Delivery. Our message delivery semantics formalizes the publish-
subscribe pattern used in ROS. The Coq definition of each agent includes a list
of topics to which the agent publishes and a list of topics to which it subscribes.
In ROSCoq, one can specify the collection of topics by an arbitrary type (say
Topic) with decidable equality. In addition, one has to specify a function (say
topicType) of type Topic → Type, that specifies the payload type of each topic.
The type of messages can then be defined as follows:
Definition Message : Type := {tp : Topic × (topicType tp)} × Header .
A message is essentially a 3-tuple containing a topic (tp), a payload correspond-
ing to tp, and a header. Currently the header of a message only has one field
(delay) which can be used by software agents (Sec. 4.2) to request the shim to
send a message at a later time. For our running example, we use 2 topics:

Definition topicType (t : Topic)
: Type := match t with

| VELOCITY ⇒ Polar2D Q
| TARGETPOS ⇒ Cart2D Q
end.

The topic TARGETPOS is used by
the external agent (see Fig. in Sec. 1)
to send the cartesian coordinates of
the target position (relative to the
robot’s current position) to the soft-
ware agent. The topic VELOCITY is

3 Sec. 4.1 explains the difference between Time and QTime

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#eLoc
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '<' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.roscore.html#Header
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.roscore.html#delay
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Topic
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime

7

used by the software agent to send the linear and angular velocity commands
to the robot hardware agent. One also provides a ternary relation to specify ac-
ceptable message delivery times between any two locations. Finally, we assume
that message delivery is ordered.

4 Semantics of Agents

For verification of distributed systems [19], one assumes that each agent is run-
ning a functional reactive program. These programs indirectly specify a prop-
erty about the sequence of events at an agent, namely it should be one that
the program could generate. In a CPS, there usually are agents which represent
hardware components (along with their ROS drivers) like sensors and actua-
tors. Often, informal specifications about their behavior is available, not their
internal design or firmware. Hence, one needs to axiomatically specify the ob-
servable behavior (sequence of events) of such devices. Moreover, these hardware
devices often depend on (e.g. sensors), or influence (e.g. actuators) the evolu-
tion of some physical quantities. A specification of their behavior needs to talk
about how the associated physical quantities evolve over time. Hence, an appro-
priate way of specifying the behavior of agents is to specify them as a relation
between the physical model (how the physical quantities evolve over time) and
the sequence of messages associated with the agent. As we will see below, for
hardware agents one can directly specify that relation. For software agents, this
relation would only have a vacuous dependence on the physical model and can
be specified indirectly as a Coq program, which is often more succinct (Sec. 4.2).

4.1 Hardware Agents. For our running example, the physical model is spec-
ified by the type iCreate (Sec. 2). The type N → (option Event) can be used to
represent a possibly finite sequence of events. So, the specification of the behav-
ior of the hardware agent is a relation (HwAgent) of the following type: iCreate
→ (N → option Event) → Prop.

Time

linVel ic

tm tr

a εv a b
We will first explain it pictorially and
then show the actual Coq definition.
iCreate is primarily an actuation de-
vice and this relation asserts how the
angular and linear velocity (see omega
and linVel in the definition of iCre-
ate above) of the robot changes in re-
sponse to the received messages. It is
quite close to informal manuals 4. The
iCreate hardware driver only receives
messages on the topic VELOCITY. It reacts to such messages by adjusting the
speed of the two motors (one on each side) so the robot’s linear and angular
velocities are close to the requested values. The figure above illustrates how the
linear velocity of an iCreate is supposed to change in response to a message re-
questing a linear velocity a and angular velocity b. tm denotes the time when the

4 http://pharos.ece.utexas.edu/wiki/index.php/Writing_A_Simple_Node_that_

Moves_the_iRobot_Create_Robot#Talking_on_Topic_cmd_vel

http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#option
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/library/Coq.Init.Datatypes.html#option
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://pharos.ece.utexas.edu/wiki/index.php/Writing_A_Simple_Node_that_Moves_the_iRobot_Create_Robot#Talking_on_Topic_cmd_vel
http://pharos.ece.utexas.edu/wiki/index.php/Writing_A_Simple_Node_that_Moves_the_iRobot_Create_Robot#Talking_on_Topic_cmd_vel

8

message was received. HwAgent asserts that there must exist a time tr by which
the linear velocity of the robot becomes close to a. The parameter reacTime is
an upper bound on tr - tm. εv and εω are parameters modeling the actuation
accuracy. After time tr, the linear velocity of the robot remains at least εv a b
close to the a. Similarly (not shown in the figure) the angular velocity remains
at least εω a b close to b. The only assumption we make about the ε is that εv
0 0 and εω 0 0 are 0, i.e. the robot complies exactly (after a certain amount
of reaction time) when asked to both stop turning and stop moving forward. In
particular, we don’t assume that εω a 0 is 0. When the robot is asked to move
forward at a m/s and not turn at all, it may actually turn a bit. For a robot to
move in a perfect straight line, one will likely have to make sure that the size
of the two wheels are exactly the same, the two motors are getting exactly the
same amount of current and so on. A consequence of our realistic assumptions
is that some integrals become more complicated to reason about. For example,
unlike in the case for perfect linear motion, the angle in the derivative of position
cannot be treated as a constant. Here is the definition of HwAgent (mentioned
above), which captures the above pictorial intuition:

Definition HwAgent (ic: iCreate) (evs : nat → option Event): Prop :=
onlyRecvEvts evs ∧ ∀ t : QTime,
let (lastCmd , tm) := latestVelPayloadAndTime evs t in

let a : Q := rad (lastCmd) in
let b : Q := θ (lastCmd) in ∃ tr : QTime, (tm ≤ tr ≤ tm + reacTime)
∧ (∀ t’ : QTime, (tm ≤ t’ ≤ tr)

→ (Min ({linVel ic} tm) (a - εv a b)
≤ {linVel ic} t’ ≤ Max ({linVel ic} tm) (a+ εv a b)))

∧ (∀ t’ : QTime, (tr ≤ t’ ≤ t) → |{linVel ic} t’ - a | ≤ εv a b)

The function latestVelPayloadAndTime searches the sequence of events evs
to find the latest message of VELOCITY topic received before time t . We assume
that there is a positive lower-bound on the time-gap between any two events
at an agent. Hence, one only needs to search a finite prefix of the sequence evs
to find that event. It returns the payload of that message and the time the
corresponding event occurred (e.g. tm in the figure). If there is no such message,
it returns the default payload with 0 as the velocities and 0 as the event time.
The last conjunct above captures the part in the above figure after time tr. The
2nd last conjunct captures the part before tr where the motors are transitioning
to the new velocity. There are 2 more conjuncts not shown above. These express
similar properties about angular velocity (omega ic), b and εω a b.

Because the semantics of a hardware agent is specified as a relation between
the physical model and the sequence of events at the agent, it is equally easy to
express the specification of sensing devices where typically the physical model
determines the sequence of events. [17] contains a specification of a proximity
sensor. Although the external agent in our running example is not exactly a
hardware agent, we specify its behavior axiomatically. We assume that there
is only one event in its sequence, and that event is a send event on the topic
TARGETPOS.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://coq.inria.fr/library/Coq.Init.Datatypes.html#nat
http://coq.inria.fr/library/Coq.Init.Datatypes.html#option
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#onlyRecvEvts
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#latestVelPayloadAndTime
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x83' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x83' x '..' x ',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/CoRN.reals.Max_AbsIR.html#Min
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/CoRN.reals.Max_AbsIR.html#Max
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x88xA7' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#latestVelPayloadAndTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS

9

We conclude this subsection with an explanation of some differences between
Time and QTime. The former represents non-negative real numbers, while the
latter represents non-negative rational numbers. Clearly, there is an injection
from QTime to Time. We have declared this injection as an implicit coercion,
so one can use a QTime where a Time is expected. Because CoRN’s theory of
differential calculus is defined for functions over real numbers, we can directly
use them for functions over real-valued time (i.e. TContR). However, QTime
is often easier to use because comparison relations (equality, less than etc.) on
rationals are decidable, unlike on real numbers. For example, if the time of
events (eTime) were represented by Time, one could not implement the function
latestVelPayloadAndTime mentioned above. Because members of TContR are
continuous functions over real-valued time, they are totally defined merely by
their value on rational numbers, i.e. QTime. For example, the specification above
only bounds velocities of the robot at rational values of time. However, it is easy
to derive the same bound for all other values of time.

4.2 Software Agents. As mentioned before in this section, the behavior of
software agents can be specified indirectly by just specifying the Coq program
that is being run by the agent. Following [23], these programs are message han-
dlers which can also maintain some state of an arbitrary type. A software agent
which maintains state of type S can be specified as a Coq function of the fol-
lowing type: S → Message → (S × list Message). Given the current state and a
received message, a message handler computes the next state and a list of mes-
sages that are supposed to be sent in response. We provide a ROSJava5 shim
which handles sending and receiving of messages for the above pure functions.
It communicates with the Coq toplevel (coqtop) to invoke message handlers. It
also converts received messages to Coq format and converts the messages to be
sent to ROSJava format. However, the state is entirely maintained in Coq, i.e.
never converted to Java. We define SwSemantics, a specification of how the shim
is supposed to respond to received messages. For a message handler, it defines
the behavior of the corresponding software (Sw) agent, essentially as a property
of the sequence of (send/receive) events at the agent. As mentioned before, the
semantic relation of a software agent has vacuous dependence on the physical
model. A software agent does not directly depend on or influence physical quan-
tities of a CPS. It does so indirectly by communicating with hardware agents
like the one described in the previous subsection.

The definition of our shim (in Java) and SwSemantics (in Coq) can be found
at [17]. Here, we explain some key aspects. SwSemantics asserts that whenever a
message m is received (at a receive event), the message handler (in Coq) is used
to compute the list of messages (say l) that are supposed to be sent. There will
be |l | send events which correspond to sending these messages one by one. Let si
be the time the ith of these send events happened. Recall from Sec. 3.1 that the
header of messages contain a delay field. Let di be the value of the delay field of
the ith message in the list l . Let t be the time the computation of l finished. The
shim ensures that s0 is close to t + d0. It also ensures that ∀ appropriate i, si+1

5 http://wiki.ros.org/rosjava

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#Time
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#latestVelPayloadAndTime
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#QTime
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#prod
http://coq.inria.fr/stdlib/Coq.Init.Datatypes.html#list
https://coq.inria.fr/refman/Reference-Manual016.html#sec567
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://wiki.ros.org/rosjava

10

is close to di+1 + si. The current state is updated with the new state computed
along with l . SwSemantics also asserts that there are no other send events; each
send event must be associated to a receive event in the manner explained above.

In our running example, the software agent receives a target position for
the robot on the topic TARGETPOS and sends velocity-control messages to the
motor on the topic VELOCITY. Recall from Sec. 3.1 that the payload type for
the former and latter topics are Cart2D Q and Polar2D Q respectively. So the
software agent reacts to data of the former type and produces data of the latter
type. Its program can be represented as the following pure function:

Definition robotPureProgam (target : Cart2D Q) : list (Q × Polar2D Q) :=
let polarTarget : Polar2D R := Cart2Polar target in

let rotDuration : R := | θ polarTarget | / rotspeed in

let translDuration : R := (rad polarTarget) / speed in

[(0,{| rad:= 0 ; θ := (polarθSign target) * rotspeed |})
; (tapprox rotDuration delRes delEps , {| rad := 0 ; θ := 0 |})
; (delay , {| rad := speed ; θ := 0 |})
; (tapprox translDuration delRes delEps , {| rad := 0 ; θ := 0 |})].

For any type A and a and b of type A, {| X := a ; Y := b |} denotes a
member of type Cart2D A. {| rad := a ; θ := b |} denotes a member of type
Polar2D A. The program produces a list of 4 pairs, each corresponding to one of
the 4 messages that the software agent will send to the hardware agent (see Fig.
in Sec. 1). One can compose this program with ROSCoq utility functions to lift it
to a message handler. The first component of each pair denotes the delay field of
the message’s header. The second component corresponds to the payload of the
message. Recall that a payload {| rad := a ; θ := b |} represents a request to
set the linear velocity to a and the angular velocity to b. In the above program,
polarTarget represents the result of converting the input to polar coordinates.
Note that even though the coordinates in target are rational numbers, those in
polarTarget are real numbers. For example, converting {| X := 1 ; Y := 1 |}
corresponds to irrational polar coordinates: {| rad :=

√
2 ; θ := π

4 |}.
The program first instructs the robot to turn so that its orientation is close

to θ polarTarget , i.e., in the direction of target . speed , rotspeed , delEps, delRes,
delay are parameters in the program. These are arbitrary positive rationals. The
robot will turn at speed rotspeed , but it can turn in either direction : clockwise
or counter-clockwise, depending on the sign of θ polarTarget . However, the prob-
lem of finding the sign of a real number is undecidable in general. Fortunately,
because θ polarTarget was computed from rational coordinates (target), one can
look at target and indirectly determine what the sign of θ polarTarget would
be. We have proved that polarθSign does exactly that. polarθSign target will
either be +1 or −1 (in the first message).

The 2nd message which requests the robot to stop (turning) should ideally
be sent after a delay of rotDuration, which is defined above as | θ polarTarget |
/ rotspeed . It is a real number because θ polarTarget is so. However our Java

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.ROSCyberPhysicalSystem.html#SwSemantics
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#TARGETPOS
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#VELOCITY
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#Cart2Polar
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x ';' '..' ';' x ']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#polarTheta
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x ';' '..' ';' x ']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x ';' '..' ';' x ']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x ';' '..' ';' x ']'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#mkPolar2D
http://coq.inria.fr/library/Coq.Init.Datatypes.html#:core scope:'(' x ',' x ',' '..' ',' x ')'
http://coq.inria.fr/library/Coq.Lists.List.html#ListNotations.:list scope:'[' x ';' '..' ';' x ']'
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Polar2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#X
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Y
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#polarTheta
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#polarTheta
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad

11

shim currently uses java.util.Timer6 and only accepts delay requests of integral
number of milliseconds7. It might be possible to use a better hardware/shim to
accept delay requests of integral number of microseconds or nanoseconds. So we
use an arbitrary parameter delRes which is a positive integer such that 1

delRes
represents the resolution of delay provided by the shim. For our current shim, one
will instantiate delRes to 1000. So, we should approximate rotDuration by the
closest rational number whose denominator is delRes. In classical mathematics,
one can prove that there “exists” a rational number that is at most 1

2∗delRes away
from rotDuration . However, finding such a rational number is an undecidable
problem in general. Fortunately, one can arbitrarily minimize the suboptimality
in this step. We have proved that for any positive rational number delEps,
tapprox rotDuration delRes delEps is a rational number whose denominator is
delEps and is at most 1+2∗delEps

2∗delRes (denoted as R2QPrec) away from rotDuration.
tapprox was easy to define because CoRN’s real numbers of the type CR are

functional programs which approximate the represented real number to arbitrar-
ily close rationals. Note however that cartesian to polar conversion was exact.
Unlike with floating points, most operations on real numbers are exact : field
operations, trigonometric functions, integrals, etc. One does not have to worry
about errors at each step of computation. Instead, one can directly specify the
desired accuracy for the final discrete result. So we think constructive reals are
ideal for robotic programs written with the intent of rigorous verification.

The 3rd message sets linear velocity to speed . The parameter delay is the
delay value for this message. We assume delay is large enough (w.r.t other pa-
rameters, e.g. reacTime) to ensure that motors have fully stopped in response
to the previous message by the time this message arrives. The final message asks
the robot to stop. Again it is sent after a nearly right amount of delay.

5 Reasoning about the system

After all the agents of a CPS have been specified, one can reason about how the
overall system will behave. For local reasoning about an agent’s behavior, one
can use natural induction on its sequence of events. For global behavior, one can
use induction on the causal order of messages. In our running example, we are
interested in how close the robot will be to the target position. In the previous
section we already saw that there might be some error in approximating real
numbers to certain rational values of time which the shim can deal with. How-
ever, that was just one source among myriad other sources of errors : messages
cannot be delivered at exact times, actuation devices are not perfect (infinitely
precise), and so on. Our goal is to derive parametric bounds on how far the
robot can be from the ideal target position, in terms of bounds on the above
error sources. Below, we consider an arbitrary run of the system. The external
agent asks the robot to go to some position target of type Cart2D Q. ic of type
iCreate denotes how the physical quantities evolve in this run.

6 http://docs.oracle.com/javase/7/docs/api/java/util/Timer.html
7 Also, recall that the shim is only required to approximately respect these requests.

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#R2QPrec
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CRMisc.IRLemmasAsCR.html#tapprox
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/CR.html
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.delayLargeEnough
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#Cart2D
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#Q
http://docs.oracle.com/javase/7/docs/api/java/util/Timer.html

12

The first step is to prove that the sequence of events at each agent looks
exactly like the figure in Sec 1. In particular, we prove that there are exactly 4
events at the hardware agent and those events correspond to the four messages
(in order) computed by the program described in the previous section. These
proofs mostly involve using the properties about topic-subscriptions and guar-
antees provided by the messaging layer, such as guaranteed and ordered delivery
of messages. We use mt0, . . ., mt3 to refer respectively to the time of occurrences
of those 4 events. The remaining proofs mostly involve using the specification
of motor to characterize the position, orientation and velocities of the robot at
each of those times. The specification of motor provides us bounds on veloci-
ties. We then use CoRN’s lemmas on differential calculus, such as the FTC to
characterize the position and orientation of the robots.

Because we assumed that εv 0 0 and εω 0 0 are both 0 (Sec. 4.1), and
initial velocities (linear and angular) are 0, the velocities will remain exactly 0
till mt0. So the position and orientation of the robot at mt0 is exactly the same
as that in the initial state (initial conditions are specified in the definition of
iCreate). At mt0, the robot receives a message requesting a non-zero angular
velocity (say w). Recall that w is either rotspeed or - rotspeed . Between mt0 and
mt1, the robot turns towards the target position. At mt1, it receives a message
to stop, however it might take some time to totally stop. At mt2, it receives
a message to start moving forward. Ideally, it should be oriented towards the
target position by mt2. However, that might not be the case because of several
sources of imperfections. The following lemma characterizes how imperfect the
orientation of the robot can be at mt2.
Definition idealθ : R := θ (Cart2Polar target).
Definition θErrTurn : R := rotspeed ∗ (timeErr + 2 ∗ reacTime)
+ (εω 0 w) ∗ (timeErr + reacTime) +((εω 0 w) / rotspeed) ∗ | idealθ | .

Lemma ThetaAtEV2 : | {theta ic} mt2 - idealθ | ≤ θErrTurn.

Because Sin and Cos are periodic, there are several ways to define θ (Cart2Polar
target). Our choice enabled us to prove that it is in the range [−π, π]. It minimizes
the turning that the robot has to do (vs., e.g. [0, 2π]). It also enables us to replace
| idealθ | by π in the above upper bound. The three terms in the definition
θErrTurn correspond to errors that are respectively proportional, independent
and inversely proportional to rotspeed . Recall (Sec. 4.1) that reacTime is the
upper bound on the amount of time the robot takes to attain the requested
velocity. timeErr has been proved to be an upper bound on the error of the
value mt1 - mt0 w.r.t. its ideal value. It is an addition of terms bounding the
inaccuracy of sending times, variance of message delivery times, R2QPrec which
bounds the inaccuracy introduced when we approximated the ideal real-valued
delay by a rational value (Sec. 4.2). A higher value of rotspeed means that the
error in the duration of turn will lead to more errors in the final angle. A lower
value of rotspeed increases the duration for which the robot has to turn, thus
accumulating more errors because of imperfect actuation of angular velocity (as
modeled by εw 0 w). However, if εw 0 w is directly proportional to the absolute
value of w, which is rotspeed , the division in the last term will cancel out. In

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#Cart2Polar
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '+' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '+' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '+' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '*' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '/' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeew
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '/' x
http://coq.inria.fr/library/Coq.QArith.QArith_base.html#:Q scope:x '/' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#rad
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.CartCR.html#Cart2Polar
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#R2QPrec
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#w

13

such a case, a lower value of rotspeed will always result in a lower upper bound
on turn error.

From mt2 to mt3, the robot will move towards the target. To analyse this

X

Y

Y’

X’

idealθ

motion, we find it convenient to rotate the axis so
that the new X axis (X’) points towards the target
position (shown as a circle in the RHS figure). We
characterize the derivative of the position of the robot
in the rotated coordinate frame:
Definition Y’Deriv : TContR :=
(linVel ic) ∗ (FSin (theta ic - FConst idealθ)).

Definition X’Deriv := (linVel ic) ∗ (FCos (theta ic - FConst idealθ)).

The advantage of rotating axes is that unlike theta ic which could be any value
(depending on target), (theta ic - FConst idealθ) is a small angle:
∀ t, mt2 ≤ t ≤ mt3 → |{theta ic} t - idealθ| ≤ θErrTrans + θErrTurn.
As explained above, θErrTurn is a bound on the error (w.r.t. idealθ), at mt2.
Even though the robot is supposed to move straight towards the goal from time
mt2 to mt3, it might turn a little bit due to imperfect actuation (as discussed in
Sec. 4.1). We proved that θErrTrans is an upper bound on that. θErrTrans
is proportional to mt3 - mt2, which in turn is proportional to the distance
of the target position from the origin. For the remaining proofs, we assume
θErrTrans + θErrTurn ≤ π

2 , which is a reasonable assumption unless the
target position is too far away or the actuation is very imprecise. In other words,
we are assuming that there cannot be more than a difference of 90 degrees
between the direction the robot thinks it is going and the actual direction. For
robots that are supposed to move for prolonged periods of time, one usually
needs a localization mechanism such as a GPS and/or a compass. In the future,
we plan to consider such closed-loop setups by adding another hardware agent
in our CPS which will periodically send much more accurate estimates of the
robot’s position and orientation as messages to the software agent.

Using the above assumption, it is easy to bound the derivatives of the robot’s
position in the rotated coordinate frame. For example, between times mt2 and
mt3, the value of (FSin (theta ic - FConst idealθ)) will be bounded above by
the constant Sin (θErrTrans + θErrTurn). We prove that at mt3, the robot
will be inside a rectangle which is aligned to the rotated axes. In the above
figure, such a rectangle is shown in gray. Recall that mt3 is the final event in the
system, where the robot receives a message requesting it to stop. The following
defines the upper bound we proved on the distance of the X’ aligned sides of the
rectangle from the X’ axis. In other words, it is a bound on the Y’ coordinate of
the robot in the rotated coordinate frame. Ideally, this value should be zero.
Definition ErrY’: R := (εv 0 w) * (reacTime + Ev01TimeGapUB)
+ (Sin (θErrTrans + θErrTurn)) * (| target | + speed*timeErr

+ Ev23TimeGapUB * (εv speed 0)) .

The first line of the above definition corresponds to the error accrued in the
position while turning (between mt0 and a little after mt1 when turning totally
stops). The second and third lines denotes the error accrued after mt2 when the

http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.core.html#TContR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FSin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FCos
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:'xE2x88x80' x '..' x ',' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://coq.inria.fr/library/Coq.Unicode.Utf8_core.html#:type scope:x 'xE2x86x92' x
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.IRMisc.CoRNMisc.html#NormSpace_instance_IR
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FSin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.robots.icreate.html#FConst
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/CoRN.transc.PowerSeries.html#Sin
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt3
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev01TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#NormSpace_instance_Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#RobotProgam.target
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.Vector.html#NormSpace_instance_Cart2D
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#timeErr
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#Ev23TimeGapUB
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#eeev
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt0
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt1
http://www.cs.cornell.edu/~aa755/ROSCoq/coqdoc/ROSCOQ.examples.iCreateMoveToLoc.html#mt2

14

robot moves towards the target position. Similarly, we proved bounds on the
distance of the Y’ aligned sides from the Y’ axis (see [17]).

We also considered the case of a hypothetical train traveling back and forth
repeatedly between two stations. This CPS has 3 hardware agents : a proximity
sensor at each end of the train and a motor at the base for 1D motion. The
software controller uses messages generated by the proximity sensor to reverse
the direction of motion when it comes close to an endpoint. We proved that it
will never collide with an endpoint [17]. We haven’t physically implemented it.

target actual video link
X Y X Y
-1 1 -1.06 0.94 vid1
-1 -1 -1.02 -0.99 vid2
1 1 1.05 0.94 vid3

5.1 Experiments. Using our shim, we
were able to use the Coq program in Sec. 4.2 to
actually drive an iCreate robot to the position
requested by a human via a GUI. While a de-
tailed estimation of parameters in the model
of hardware, message delivery, etc. is beyond
the scope of this paper, we did some experiments to make sure that the robot
is in the right ball park. The table above shows some measurements (in meters)
from the experiments.

6 Related Work

Hybrid automata [2] is one of the earliest formalisms to simultaneously model
and reason about both the cyber (usually discrete dynamics) and physical (usu-
ally continuous dynamics) components of a CPS. Several tools have been devel-
oped for approximate reachability analysis, especially for certain sub-classes of
hybrid automata (see [1] for a survey). However, hybrid automata provide little
structure to implement complicated CPSs in a modular way. Also for CPSs with
several communicating agents, it is rather non-trivial to come up with a hybrid
automata model which accounts for all possible interactions in such distributed
systems. In ROSCoq, we independently specify the agents of a distributed CPS
and explicitly reason about all possible interactions.

The KeYmaera [14] tool takes a step towards more structural descriptions
of CPSs. It has a non-deterministic imperative language to specify hybrid pro-
grams. It also comes with a dynamic-logic style proof theory for reasoning about
such programs [13]. Unlike ROSCoq, the semantics of KeYmaera’s programming
language pretends that one can exactly compare two real numbers, which is im-
possible in general. When one uses floating point numbers to implement such
programs, the numerical errors can add up and cause the system to violate the
formally proven properties [11]. In contrast, the use of constructive reals forces
us to explicitly account for inexactness of certain operations (like comparison)
on real numbers and hence there is one less potential cause of runtime errors.
In [21], they consider 2D dynamics similar to ours. They don’t consider the
possibility of the robot turning a little when asked to go straight. Finally, the se-
mantics of their system assumes that all the robots are executing a synchronized
control loop. Our asynchronous message passing based model is more realistic
for distributed robotic systems.

http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid1.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid2.html
http://www.cs.cornell.edu/~aa755/ROSCoq/indirectLinks/vid3.html

REFERENCES 15

Unlike the above tools, our focus is on correct-by-construction, i.e. we intend
to prove properties of the actual software controller and not a simplified model of
it. Some tools [16, 18] automatically synthesize robot-controllers from high-level
LTL specifications. However, these fully automatic approaches do not yet scale
up to complicated robotic systems. Also, the specifications of these controllers
are at a very high level (they discretize the continuous space) and do not yet
account for imperfections in sensing, actuation, message delivery, etc.

Unlike the above formalisms, in ROSCoq one uses Coq’s rich programming
language to specify their hybrid programs and its powerful higher order logic to
succinctly express the desirable properties. Coq’s dependent types allow one to
reuse code and enforce modularity by building interfaces that seamlessly specify
not only the supported operations but also the logical properties of the opera-
tions. To trust our proofs, one only needs to trust Coq’s type checker. Typical
reasoning in KeYmaera relies on quantifier elimination procedures implemented
using Mathematica, a huge tool with several known inconsistencies [6]. Our
framework did not require adding any axiom to Coq’s core theory. This is mainly
because CoRN’s real numbers are actual computable functions of Coq, unlike the
axiomatic theory of reals in Coq’s standard library. Interactive theorem provers
have been previously used to verify certain aspects of hybrid systems [7, 12]. Like
ROSCoq, [7] uses constructive reals and accounts for numerical errors. However,
it only supports reasoning about hybrid systems expressed as hybrid automata.
[12] is primarily concerned about checking absence of collisions in completely
specified flight trajectories.

7 Conclusion and Future Work

We presented a Coq framework for developing certified robotic systems. It ex-
tends the LoE framework to enable holistic reasoning about both the cyber and
physical aspects of such systems. We showed that the constructive theory of anal-
ysis originally developed by Bishop and later made efficient in the CoRN project
is powerful enough for reasoning about physical aspects of practical systems.
Constructivity is a significant advantage here because the real numbers in this
theory have a well defined computational meaning, which we exploit in our robot
programs. Our reasoning is very detailed as it considers physical imperfections
and computational imperfections while computing with real numbers.

We plan to use our framework to certify more complicated systems involving
collaboration between several robots [5]. Also, we plan to develop tactics to
automate as much of the reasoning as possible. We thank Jean-Baptiste Jeannin,
Mark Bickford, Vincent Rahli, David Bindel and Gunjan Aggarwal for helpful
discussions, Bas Spitters and Robbert Krebbers for help with CoRN, and Liran
Gazit for providing the robot used in the experiments.

References

[1] R. Alur. “Formal verification of hybrid systems”. In: EMSOFT. IEEE, 2011,
pp. 273–278.

16 REFERENCES

[2] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. “Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems”.
In: Hybrid Systems. LNCS 736. Jan. 1, 1993, pp. 209–229.

[3] M. Bickford, R. L. Constable, R. Eaton, D. Guaspari, and V. Rahli. Introduction
to EventML. www.nuprl.org/software/eventml/IntroductionToEventML.pdf. 2012.

[4] E. Bishop and D. Bridges. Constructive Analysis. Springer Science & Business
Media, 1985. 490 pp.

[5] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi, H. I. Christensen, and D. Rus.
“Towards Coordinated Precision Assembly with Robot Teams”. In: ISER. 2014.

[6] A. J. Durán, M. Pérez, and J. L. Varona. “The Misfortunes of a Trio of Mathe-
maticians Using Computer Algebra Systems. Can We Trust in Them?” In: AMS
Notices 61.10 (Nov. 1, 2014), p. 1249.

[7] H. Geuvers, A. Koprowski, D. Synek, and E. v. d. Weegen. “Automated Machine-
Checked Hybrid System Safety Proofs”. In: ITP. LNCS. 2010, pp. 259–274.

[8] R. Krebbers and B. Spitters. “Type classes for efficient exact real arithmetic in
Coq”. In: LMCS 9.1 (Feb. 14, 2013).

[9] L. Lamport. “Buridan’s Principle”. In: Foundations of Physics 42.8 (Aug. 1,
2012), pp. 1056–1066.

[10] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”.
In: Commun. ACM 21.7 (1978), pp. 558–565.

[11] S. Mitsch and A. Platzer. “ModelPlex: Verified Runtime Validation of Verified
Cyber-Physical System Models”. In: RV. LNCS. Sept. 22, 2014, pp. 199–214.

[12] A. Narkawicz and C. A. Munoz. “Formal verification of conflict detection algo-
rithms for arbitrary trajectories”. In: Reliab. Comput., this issue (2012).

[13] A. Platzer. “Logics of Dynamical Systems”. In: LICS. 2012, pp. 13–24.
[14] A. Platzer and J.-D. Quesel. “KeYmaera: A hybrid theorem prover for hybrid

systems (system description)”. In: AR. Springer, 2008, pp. 171–178.
[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng. “ROS: an open-source Robot Operating System”. In: ICRA workshop
on open source software. Vol. 3. 2009, p. 5.

[16] V. Raman and H. Kress-Gazit. “Synthesis for multi-robot controllers with inter-
leaved motion”. In: ICRA. May 2014, pp. 4316–4321.

[17] ROSCoq Online Reference. url: http://www.cs.cornell.edu/~aa755/ROSCoq.
[18] S. Sarid, B. Xu, and H. Kress-Gazit. “Guaranteeing high-level behaviors while

exploring partially known maps”. In: RSS. Sydney, July 2012, p. 377.
[19] N. Schiper, V. Rahli, R. V. Renesse, M. Bickford, and R. L. Constable. “Devel-

oping correctly replicated databases using formal tools”. In: DSN. IEEE, 2014,
pp. 395–406.

[20] B. Spitters and E. Van Der Weegen. “Type classes for mathematics in type
theory”. In: MSCS 21 (Special Issue 04 2011), pp. 795–825.

[21] Stefan Mitsch, Khalil Ghorbal, and Andŕe Platzer. “On Provably Safe Obstacle
Avoidance for Autonomous Robotic Ground Vehicles”. In: RSS. 2013.

[22] C. Talcott. “Cyber-physical systems and events”. In: Software-Intensive Systems
and New Computing Paradigms. Springer, 2008, pp. 101–115.

[23] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson. “Verdi: A Framework for Implementing and Formally Verifying
Distributed Systems”. In: PLDI. ACM, 2015.

http://www.cs.cornell.edu/~aa755/ROSCoq

	ROSCoq: Robots powered by constructive reals
	Introduction
	Physics
	Events and Message Delivery
	Message Delivery

	Semantics of Agents
	Hardware Agents
	Software Agents

	Reasoning about the system
	Experiments

	Related Work
	Conclusion and Future Work

